
Dr. Edgar Huckert

08-2017 V1.0

SFML and conventional make files

I often write music programs: MIDI editors, converters and music notation
editors. Normally I use C++ (occasionally also D) with wxWidgets. My goal is
to write portable programs that run under Windows and Linux.

Music notation editors require a lot of graphic programming: you have to draw
systems (5 horizontal lines), Text, symbols (like ff for fortissimo or different
kinds of brackets) and notes with different kinds of flags or even partial
rounded curves for the bindings between notes. I used with some succes the
graphic methods contained in wxWidgets. The problem: the majority of these
routines do something on the screen immediately after each call. This leads to
a long series of synchronous calls which can be very time consuming. Even
with wxWidgets I encountered some incompatiblities between Windows and
Linux/GTK appear forcing you to make tricks.

I found that I could try a different approach for the screen output routines:
using the portable opengl library or SDL something like SFML. My choice was
finally SFML as it is the more modern approach with a higher level of abstrac-
tion. SFML ist basically a C++ API with bindings in many other programming
languages. I manipulates rather the internal screen buffer before – after a
series of calls - this buffer is redrawn. I have tested C++ and D (package
DSFML).

You will find here some of my SFML test results with C++. The program is
based on a short sample found in the SFML documentation. I enhanced it by
adding oder modifying calls for

• drawing lines
• drawing rectangles
• drawing rotated texts
• drawing sprites
• simple animation using rotation
• basic performance measurement
• better error handling

I have not yet tested if and how SFML can be used for output to a printer.

My sample program uses nearly the complete set of libraries coming with
SFML – only the network library is not used:

• window
• audio
• graphics

• system
• sfml

It is very strange that people requiring help in the internet forums are always
urged to use cmake instead of the simple make build system. Cmake ist
very complicated and requires a large installation. Make is very simple, very
old and is normally bundled to the usual compilers (gcc/g++ in this case). Not
to mention Visual C (Microsoft) and Eclipse with their huge environments. I
have seen a lot of projects where people struggled more with Visual C or
Eclipse than with the basic project problems. Worst of all build systems: ant
used in JAVA projects.

Believe me: neither cmake, nor GUIs like Eclipse, nor Visual C are required in
order to build SFML programs.

Make files describe the rules (also called „targets“) to build programs by
specifying dependencies between the program components. Consult Unix
tutorials or books for an introduction to make files.

Here is a conventional make file for Windows using the MingW gcc/g++
compiler:

OBJS=sfml2.o
CFLAGS=-static -DWIN32 -Ic:\Huckert\src\SFML\SFML-2.4.2\include
The most important rule
LFLAGS=-Lc:\huckert\src\SFML\SFML-2.4.2\lib -lsfml-main -lsfml-
window -lsfml-graphics -lsfml-system -lsfml-audio

sfml2.exe: $(OBJS)
g++ -o sfml2.exe $(CFLAGS) $(OBJS) $(LFLAGS)

sfml2.o: sfml2.cpp
g++ -c $(CFLAGS) -o sfml2.o sfml2.cpp

clean:
del $(OBJS) sfml2.exe

And here is a very similar make file for Linux/Debian using the GNU gcc/G++
compiler:

OBJS=sfml2.o
CFLAGS
LFLAGS=-L/usr/lib/x86_64-linux-gnu -lsfml-window -lsfml-
graphics -lsfml-system -lsfml-audio

sfml2: $(OBJS)
g++ -o sfml2 $(CFLAGS) $(OBJS) $(LFLAGS)

sfml2.o: sfml2.cpp
g++ -c $(CFLAGS) -o sfml2.o sfml2.cpp

clean:
rm $(OBJS) sfml2

You will have to control and modify the flags (variables CFLAGS, LFLAGS), the
source and object names and the pathes. You can invoke the build process by
calling make with the „-f“ flag on the command line (shell, „black“ window):

make -f sfml2.mak

The most important rule for working with make files: use real tabs instead of
spaces for indentation! Indentation is an essential mechanism in make files. If
you look at other make files as produced for large programs / packages the
you will find that the make files are much more complex and sometimes
unreadable. The reason is: these files are often generated by programs or
scripts. The majority of them are more complex than really needed.

Under Windows I had to modify my execution path (see setpath.bat in the ZIP
file). For whatever reason a message „sfml-graphics-2.dll missing“ appeared
on the screen when starting the executable.

Here is the source code for this SFML program. You will find the source, the
make files and the sample data files in the ZIP file.

// module sfml2.cpp: version for Linux/Debian and Windows
// original sample program from the Internet:
// https://www.sfml-dev.org/documentation/2.4.2/

// strongly enhanced by EH 08-2017
// compile on windows with g++ (Mingw):
// see makefile sfml2.mak
// for execution: PATH must be set to include sfml-graphics-2.dll:
// on Windows: set PATH=%PATH%;c:\huckert\src\SFML\SFML-2.4.2\bin
//
// compile on Linux/Debian with GNU g++ :
// see makefile sfml2u.mak
// libs must have been installed via: sudo apt-get install libsfml-dev

#include <SFML/Audio.hpp>
#include <SFML/Graphics.hpp>

#include <iostream>
#include <inttypes.h> // not really needed

// ---
// define five horizontal lines corresponding to a music system
sf::VertexArray makeNotenzeile(int xp1, int xp2, int yp)
{
 #define LDIST 10
 #define LINES 5
 // Horiz.line 1
 sf::VertexArray system(sf::Lines, LINES * 2);
 //
 int m = 0;
 for (int n=0; n < LINES; n++)
 {

 system[m].position = sf::Vector2f(xp1, yp + (n * LDIST));
 system[m].color = sf::Color::Yellow;
 system[m+1].position = sf::Vector2f(xp2, yp + (n * LDIST));
 system[m+1].color = sf::Color::Yellow;
 m += 2;
 }
 //
 return system;
} // end makeNotenzeile()

// --
int main()
{
 int ret;
 sf::Clock clock;
 sf::Time elapsed;
 int64_t t64;
 unsigned long count = 0L;
 #define WINW 1000
 #define WINH 800
 //
 // Create the main window
 sf::RenderWindow window(sf::VideoMode(WINW, WINH), "SFML window");
 //
 // Load a sprite to display
 sf::Texture texture;
 //if (!texture.loadFromFile("cute_image.jpg"))
 sf::IntRect area(100, 100, 600, 450); // defines the area to be loaded
 //ret = texture.loadFromFile("./Koala.jpg", area);
 ret = texture.loadFromFile("./Koala.jpg");
 if (! ret)
 {

 std::cout << "file Koala.jpg not found" << std::endl;
 return EXIT_FAILURE;
 }
 texture.setSmooth(true);
 sf::Sprite sprite(texture);
 //
 // load a second sprite (violin key)
 sf::Image violKey;
 ret = violKey.loadFromFile("./keyv2.bmp");
 if (! ret)
 {
 std::cout << "file keyv2 not found" << std::endl;
 return EXIT_FAILURE;
 }
 sf::Color col(255,255,255);
 violKey.createMaskFromColor(col, 20);
 sf::Texture violKeyTx;
 violKeyTx.loadFromImage(violKey);
 sf::Sprite violKeySp(violKeyTx);
 //
 // Create a graphical text to display
 sf::Font font;
 // EH: path added for font
 #ifdef WIN32
 ret = font.loadFromFile("c:\\windows\\fonts\\arial.ttf");
 #else
 ret = font.loadFromFile("/usr/share/fonts/truetype/dejavu/DejaVuSans-
Bold.ttf");

 #endif
 if (! ret)
 {
 std::cout << "font DejaVuSans-Bold.ttf not found" << std::endl;
 return EXIT_FAILURE;
 }
 sf::Text text("Hello SFML", font, 45);
 text.setPosition(500, 70);
 text.setColor(sf::Color::Green);
 text.setRotation(360.0 - 15.0);
 //
 // Load a music file to play
 /*
 sf::Music music;
 if (!music.openFromFile("./nice_music.ogg"))
 return EXIT_FAILURE;
 //
 // Play the music
 music.play();
 */
 //
 // rectangles are the replacement for a thick line
 sf::RectangleShape rectangle;
 rectangle.setSize(sf::Vector2f(100, 80));
 rectangle.setOutlineColor(sf::Color::Red);
 rectangle.setOutlineThickness(5);
 rectangle.setPosition(30, 70);
 //
 // Define five music systems
 sf::VertexArray system1 = makeNotenzeile(10, WINW - 10, (WINH / 2) + 0);
 sf::VertexArray system2 = makeNotenzeile(10, WINW - 10, (WINH / 2) + 80);
 sf::VertexArray system3 = makeNotenzeile(10, WINW - 10, (WINH / 2) + 160);
 sf::VertexArray system4 = makeNotenzeile(10, WINW - 10, (WINH / 2) + 240);
 sf::VertexArray system5 = makeNotenzeile(10, WINW - 10, (WINH / 2) + 320);
 //
 float rot = 0.0;
 //
 // Start the loop
 while (window.isOpen())
 {
 // Process events
 sf::Event event;
 while (window.pollEvent(event))
 {
 // Close window: exit
 if (event.type == sf::Event::Closed)
 {
 std::cout << "Exit required" << std::endl;
 window.close();
 }
 }
 //
 clock.restart();
 // Clear screen
 window.clear();
 //
 // Draw the sprite
 window.draw(sprite);
 //
 // Draw the string
 window.draw(text);

 //
 window.draw(rectangle);
 //
 // draw the music systems (5 horizontal lines per system)
 window.draw(system1);
 violKeySp.setPosition(10, (WINH / 2) - 8);
 window.draw(violKeySp);
 window.draw(system2);
 window.draw(system3);
 window.draw(system4);
 window.draw(system5);
 //
 // Update the window
 window.display();
 //
 // result on Windows: mostly < 1 ms, occasionally 5 ms
 elapsed = clock.restart();
 t64 = elapsed.asMicroseconds();
 //std::cout << "count=" << count << " t=" << t64 << std::endl;
 count++;
 if ((count % 100) == 0)
 {
 // rotate the sprite/texture
 // this works - but is not really need for tests
 rot = rot + 1.0;
 if (rot > 90.0)
 rot = 0.0;
 //sprite.setRotation(rot);
 }
 }
 return EXIT_SUCCESS;
} // end main()

If you compile and start this sample program the look carefully at the pathes
(complete file names) used in the source code. You probably must modify
them.

And here is a screen shot for this program. This is from a Windows computer –
but the output on Linux/Debian is exactly the same:

The ZIP file contains a second test program called noten.cpp with its asso-
ciated make files. This program has been written in order to redesign the
screen output driver for a music notation editor. This second test program uses
C++ routines for recurring tasks (like loading symbols, drawing music systems
etc.). When using sub programs (routines, methods) it is important to create
SFML class instances on the heap (using new or malloc()) and not on the
stack! You can see this in routine loadSymbol().

	SFML and conventional make files

